9.5. Equations#
Straight line
\[
y = mx + b
\]
\[
Ax + By + C = 0
\]
Point-slope formula
\[
y - y_1 = m(x-x_1)
\]
\[
m = (y_2 - y_1)/(x_2 - x_1)
\]
Angle between lines
\[
\alpha = arctan[(m_2 - m_1)/(1 + m_2 m_1)]
\]
Distance between two points
\[
d = \sqrt{(y_2 - y_1)^2 + (x_2 - x_1)^2}
\]
Quadratic Equation
\[
x = \frac {-b \pm \sqrt{b^2 -4ac}} {2a}
\]
Mean of a population
\[
\mu = \frac{1}{N}\sum_{i=1}^N
\]
Mean of a sample
\[
\bar{x} = \frac{1}{n}\sum_{i=1}^n
\]
Standard deviation of a sample
\[
s = \sqrt{\frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2}
\]
Standard deviation of a population
\[
\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^N (x_i - \mu)^2}
\]
Variance of a sample
\[
s^{2} = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2
\]
Variance of a population
\[
\sigma^{2} = \frac{1}{N} \sum_{i=1}^N (x_i - \mu)^2
\]
Z-transform
\[
z = \frac{x-\mu}{\sigma}
\]
Ohm’s Law
\[
V = IR
\]
\[
I = \frac{V}{R}
\]
\[
R = \frac{V}{I}
\]
Resistors in series
\[
R_t = R_1 + R_2 + R_3 + \ldots + R_n
\]
\[
I_t = I_1 = I_2 = I_3 = \ldots = I_n
\]
\[
V_t = V_1 + V_2 + V_3 + \ldots + V_n
\]
Resistors in parallel
\[
\frac{1}{R_t} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \ldots + \frac{1}{R_n}
\]
\[
V_t = V_1 = V_2 = V_3 = \ldots = V_n
\]
\[
I_t = I_1 + I_2 + I_3 + \ldots + I_n
\]
Power in steady-state DC circuits
\[
P = VI
\]
\[
P = I^{2}R
\]
\[
P = \frac{V^2}{R}
\]